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Abstract

Meteorologists and other scientists rely heavily on remotely sensed data collected from instruments aboard or-
biting satellites. The design of such instruments requires technical and economic trade-offs that results in certain
desirable data not being directly available. One way to mitigate the lack of availability of this data is to use machine
learning techniques to estimate the values that cannot be directly observed. This can be accomplished by exploit-
ing statistical correlation with information in available data sets. By combining the information from multiple other
sources it is often possible to create an accurate estimate of the physical parameters which are not directly observed.
We apply this idea toward the problem of estimating the 13.3µm band for the Visible Infrared Imaging Radiometer
Suite (VIIRS), an instrument aboard NOAA’s operational satellite, Suomi NPP. The radiance from the 13.3µm band
is not directly available from VIIRS although this band has important applications such as estimating cloud-top pres-
sure. We demonstrate that a reliable estimate of this band can be made using other VIIRS bands at 4, 9, 11 and 12µm,
as well as input from the Cross-track Infrared Sounder (CrIS), which produces data at much finer spectral resolution,
making measurements in hundreds of nearby infrared bands, though with lower spatial resolution. We have tested the
result as input values to an algorithm which estimates cloud top pressure using data from 11, 12, and 13.3µm bands.

1 Introduction

Clouds remain a subject in climate studies because of their
dominant role in Earth’s energy balance and water cycle.
Cloud visible reflectivity and infrared trapping have sig-
nificant impact on weather systems and climate changes.
Among the challenges are to better describe the horizon-
tal and vertical variability of global cloud properties and
to mitigate problems in long-term descriptions of cloud
trends caused by sensor changes from Polar-Orbiting En-
vironmental Satellite (POES) to Earth Observing Sys-
tem (EOS) to Joint Polar Satellite System (JPSS) plat-
forms. With the October 2011 launch of the Suomi Na-
tional Polar Partnership (SNPP), the Visible and Infrared
Imaging Radiometer Suite (VIIRS) becomes the opera-
tional imager for the afternoon NOAA environmental po-
lar orbiting satellite. Additionally, the Cross-track In-

frared Sounder (CrIS), which is a Fourier transform spec-
trometer, becomes the operational sounder. VIIRS and
CrIS are intended to continue the measurements and prod-
ucts established with Advanced Very High Resolution Ra-
diometer (AVHRR) and HIRS (High resolution Infrared
Radiometer Sounder) sensors that have flown on NOAA
POES platforms for over 30 years. In addition the cli-
mate measurements started with the MODerate resolution
Imaging Spectroradiometer (MODIS) and the Advanced
Infrared Sounder (AIRS) in the NASA research EOS are
also to be continued [4, 1].

However, VIIRS does not have any spectral bands lo-
cated in H2O or CO2 absorption bands, which degrades
its ability to determine semi-transparent cloud properties
(including cloud top pressures/heights) compared to that
of sensors including even a single absorption channel [3].
In an effort to ensure continuity and consistency between
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historical cloud products and those provided from the
SNPP sensors (and JPSS in the future), we demonstrate
a VIIRS plus CrIS cloud algorithm that can extend the
AVHRR/HIRS and MODIS/AIRS cloud record. VIIRS
has 16 spectral bands measured at 780 meter resolution at
nadir, 9 in the visible and near infrared plus 5 in the in-
frared. This paper presents a technique to generate an ad-
ditional VIIRS channel at 13.3µm statistically constructed
from CrIS and VIIRS measurements. The CrIS sensor
makes 1305 high spectral resolution measurements from
15.1 to 3.8µm at 15 km resolution; the measurements in
the 15µm CO2 absorption bands are especially important
for cloud property retrieval. Using the infrared spectral
bands on VIIRS at 780 meter resolution and a convolu-
tion of the 15µm spectral measurements on CrIS at 15
km resolution, an artificial 13.3µm channel at 780 meter
resolution is created using by statistical estimation. The
observed VIIRS channels combined with the statistically
constructed 13.3µm channel are then used in a cloud top
pressure algorithm that has been developed for the pend-
ing Advanced Baseline Imager to be launched in 2015 on
GOES-R [2].

As proxy for VIIRS we can use data from the Mod-
erate Resolution Image Spectroradiometer (MODIS), an
instrument aboard the NASA satellites Aqua and Terra,
part of the Earth Observing System (EOS). This instru-
ment has bands that match those of VIIRS. In particular,
MODIS bands 23, 29, 31, and 32 (4, 8.5, 11, and 12µm)
have characteristics similar to the M13, M14, M15 and
M16 bands of VIIRS. In addition, MODIS band 33 is cen-
tered at 13.3µm, which is the target spectral band, and has
all of the resolution, location, and temporal characteris-
tics desired. To stand in for the CrIS component, we will
use data from the Atmospheric Infrared Sounder (AIRS),
which is also aboard the Aqua satellite. Like CrIS, AIRS
covers the target spectral response range around 13.3µm
(through a multitude of narrow bands), and like CrIS at a
much lower spatial resolution.

There are several different families of techniques for
achieving the unification of related data from different
sources generally called image or data fusion [6]. The
major purpose of those studies has been to generate high-
resolution multispectral imagery combining the spectral
characteristics of low-resolution data with the high spa-
tial resolution of the panchromatic imagery. As a class,
these methods are known as pan-sharpening algorithms.
A number of approaches to this problem have been de-
veloped with varying assumptions, and a review of pan-
sharpening data fusion methods can be found in [10].
Most common are IHS (Intensity-Hue-Saturation) Trans-
form [11, 12], Brovey Transform [13, 14], High-Pass

Filtering [15, 16], High-Pass Modulation [17], Princi-
pal Component Analysis [18], ARSIS [19], À Trous
Algorithm (Wavelet Based Transform) [20, 21, 22, 23],
Mallat algorithms (Wavelet-based image fusion meth-
ods) [24, 25, 26, 27, 28, 29]. All of these data fusion meth-
ods operate on the assumption of having geo-rectified data
under clear sky and captured at the same time. There
have also been a few attempts to apply fusion tools to land
surface modelling. For example, surface reflectance was
modelled to fuse Landsat and MODIS measurements via
the spatial and temporal adaptive reflectance fusion model
(STARFM) for clear sky conditions [30, 31, 32].

Estimation of VIIRS 13.3µm band fits into the gen-
eral image fusion framework as defined in [6], but does
not fit into the framework of pan-sharpening fusion al-
gorithms. Wald (c.f. [6]) defines image fusion as “a for-
mal framework in which are expressed means and tools
for the alliance of data originating from different sources.
It aims at obtaining information of a greater quality, al-
though the exact definition of ‘greater quality’ will de-
pend on the application.” According to Wald, the qual-
ity assessment depends on the application. In this case
the synthetic 13.3µm band is intended to be used in al-
gorithms to create data products, such as the cloud-top
pressure product described below, in place of a measured
band which is not available. Thus the assessment of the
quality of a synthetic band is the accuracy of derived prod-
ucts using the estimated data. Fortunately there are op-
portunities to make quantitative assessments of such an
approach through the use of MODIS and AIRS as proxy
data sources, since in the case of MODIS, unlike with VI-
IRS, a directly measured 13.3µm band is available. The
results of preliminary tests are described in Section 3.

We will assume in this work that the value at a point
of the the target 13.3µm can be estimated as a function
of bands available on VIIRS, at least locally. We will
show that this assumption approximately holds by testing
it with a representative set of MODIS and AIRS granules
as a proxy for VIIRS and CrIS. In addition, to compute
the function which produces 13.3µm estimated values, we
will assume a measure of scale-invariance in the relation-
ship between available source bands and the target band.
This assumption makes it possible to establish a relation-
ship between a vector of radiance values in the source
bands and the scalar radiance value in the target band for
low resolution images, and apply the relationship to high
resolution images. We will provide some evidence for the
validity of this assumption as well.

The remainder of this paper is organized as follows.
Section 2 describes the estimation algorithm in detail.
Section 3 analyzes the results of applying the algorithm
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to representative sets of overlapping MODIS and AIRS
granules and describes the results of using the artificial
13.3µm band in the generation of cloud-top pressure, a
real-world data product with important meteorological ap-
plications. Section 4 presents the results when the mul-
tisensory fusion approach is applied to VIIRS and CrIS
granules, also showing a comparison with nearly coinci-
dent MODIS results. The paper is concluded in Section 5.

2 Statistical Estimation
In this section we will briefly describe the statistical esti-
mation algorithm for estimating the high spatial resolution
radiance values from a collection of low resolution hyper-
spectral images measured around the desired wavelength
by a hyperspectral instrument and a collection of high spa-
tial resolution images measured by low spectral resolution
instrument at a few other (not necessarily neighbouring)
wavelengths. The block diagram of the estimation algo-
rithm is shown in Figure 1. The top left of the diagram
indicates the flow of corresponding geometric informa-
tion for VIIRS and hyperspectral instrument (CrIS) which
is used to average high resolution VIIRS images RH

⌫ for
the input bands ⌫ = (⌫1, ⌫2, · · · , ⌫n), to produce simu-
lated low resolution bands RL

⌫ , matching the resolution
of CrIS. On the top right of the diagram in Figure 1, the
flow indicates that a 13.3µm target band at CrIS resolution
is estimated using the desired spectral response from the
CrIS radiances, and the result is denoted RL

� . The key el-
ement of this work is that we introduce a spatially varying
estimator F which minimizes the mean square error

|R̃L
� � F (RL

⌫ )|2.

The function F is a function of location and input band
radiances at each pixel. By assuming that the relationship
of pointwise radiances holds invariant of scale, we can
produce an estimate R̃H

� = F (RH
⌫ ) of the true 13.3µm

target band radiances 13.3µm at the higher VIIRS resul-
tion using the high resolution VIIRS measured input radi-
ances F (RH

⌫ ) as shown in the lower right of the block di-
agram. Figure 2 (left side) shows the spectral response we
used to create the low resolution 13.3µm band from AIRS
(CrIS proxy) shown on the top right. Figure 3 shows the
four input bands – 4, 8.5, 11, and 12µm (MODIS bands
23, 29, 31, and 32 at AIRS resolution) used for building
the 13.3µm band estimator, F . The bands were produced
by averaging the MODIS bands using the AIRS geometry
and pixel footprints.

A meaningful assertion that 13.3µm values can be
computed from a function F of the four input bands, im-

plies that the local variance of the values 13.3µm should
be small in a neighbourhood of a fixed value for the input
bands. In this case we are using MODIS data exclusively
since for this instrument, the measured 13.3µm values are
known. Visualizing this as a scatter plot would require 1
output and 4 input, or a total of 5 dimensions. To create a
3-D visualization we have taken the x-y plane to be pro-
jections into the first 2 PCA components of the input vari-
ables, for figure 4, with the z-axis being the corresponding
value in the 13.3µm band. The figure shows two rotated
views of this scatter plot. It is clear from the figure that,
indeed, the relationship of the input bands to the target
band is essentially a function.

The estimation function is implemented using a k-
nearest neighbour search, and locally averaging the re-
sults. In particular, to estimate the target radiance at a
given pixel, the corresponding vector of radiance values
for the source bands at high resolution is used to query
the database. The query is efficiently executed using the
k-d tree data search algorithm to find k-nearest neigh-
bours. The corresponding target 13.3µm values for these
neighbours are then averaged to create an estimated value
for each pixel at the higher resolution in the target band
13.3µm band.

3 Fusion Results: MODIS/AIRS as
proxy

To evaluate our algorithm we require ground truth val-
ues RH

� since the error of our estimates are given by the
mean square errors |RH

� � R̃H |2. Since the 13.3µm val-
ues are unavailable for VIIRS, we use MODIS images
as a proxy for VIIRS, and AIRS hyperspectral data as
a proxy for CrIS hyperspectral data. In this section we
will demonstrate two examples of our statistical estima-
tion of a 13.3µm channel in which MODIS/AIRS pair
is used as proxy for VIIRS/CrIS. The first example is
based on MODIS granule MYD021KM.A2012020.0500
and AIRS.2012.01.20.050, a cloudy ocean scene off the
southern coast of Australia. Figure 5 demonstrates the
results of applying the algorithm to these granules. The
actual radiances for MODIS 13.3µm band are shown on
the right, the estimated values produced by the algorithm
are in the center, and the absolute value of the difference
image is on the left.

Figure 6 shows the results for MODIS Aqua gran-
ule MYD021KM.A2012243.0440, a recent granule sit-
uated over the Korean Peninsula, and two AIRS L1B
granules which overlap it, AIRS.2012.08.30.046 and
AIRS.2012.08.30.047. Once again, the actual and esti-
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Figure 1: Block diagram of statistical estimation algorithm.

mated high-resolution 13.3µm band, in the left and cen-
ter respectively, are very similar. The image on the right
shows that the difference is very small. Histograms of
the differences between actual 13.3µm band and the esti-
mated values are shown in Figure 7.

In addition to testing the 13.3µm values produced by
our estimation against the known MODIS 13.3µm band,
we tested it as input values to an algorithm which es-
timates cloud top pressure using data from 11, 12, and
13.3µm bands (cf. Figures 8 and 9 ). This algorithm was
developed for the Geostationary Operational Environmen-
tal Satellite R Series (GOES-R). That satellite will be
launched as soon as 2015 and will carry the Advanced
Baseline Imager (ABI) which will measure 13.3µm band
(though at a lower 2km spatial resolution). These tests
showed that similarly-synthesized data from VIIRS and
CrIS would allow VIIRS/CrIS to match GOES-R in terms
of cloud-top pressure determination, to within the GOES-
R specifications, which is especially important for getting
such values for night scenes since GOES-R, unlike VIIRS,
relies on data in the visible to near-infrared range.

4 Fusion Results: VIIRS/CrIS
In this section we pursue the statistical estimation of
a 13.3 micron channel for VIIRS data using the collo-
cated CrIS measurements. As in the previous section, we
convolve the CrIS high spectral resolution measurements
with the MODIS channel 33 spectral response function to
create broadband 13.3 micron measurements at CrIS res-
olution. Then a regression relationship is made between
those measurements and spatially collocated VIIRS M13,

M14, M15, and M16 measurements aggregated to CrIS
spatial resolution. Thereafter that regression relationship
is applied to full resolution VIIRS 780 meter measure-
ments to achieve statistically estimated VIIRS 13.3 mi-
cron spectral band measurements.

Figure 11 shows a comparison of VIIRS 13.3 mi-
cron brightness temperatures statistically constructed us-
ing Suomi NPP radiance data from 28 August 2012 over
Korea and MODIS brightness temperatures from Aqua 10
minutes earlier. There is excellent agreement in the syn-
optic scale patterns. Figure 12 displays the cloud top pres-
sures derived from the MODIS radiances using the ABI
algorithm along with the same for VIIRS with the statisti-
cally estimated 13.3 micron radiances. Again the overall
agreement in this level 2 parameter for the two scenes sep-
arated by ten minutes is very good.

To investigate the impact of the 13.3 micron radiances,
Figure 13 (left) shows the cloud top pressures derived
without the 13.3 micron data using an optimal estimation
approach that relies on the NCEP Global Data Assimila-
tion System as a first guess. The difference of with and
without 13.3 micron data is shown in Figure 13 (right).
In high thin cirrus west of North Korea, the ABI algo-
rithm with the 13.3 micron data gets the CTP at 250 hPa
while the VIIRS optimal estimation without the 13.3 mi-
cron data pins it at the tropopause. In low clouds over the
Pacific Ocean south of Japan, the 13.3 micron data helps
the ABI algorithm left the clouds off the ocean surface, in
better agreement with MODIS results.
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5 Conclusion

With preliminary examples using both Aqua MODIS and
AIRS data as well as Suomi NPP VIIRS and CrIS data,
we demonstrate that a reliable estimate of the imager 13.3
micron broadband radiance data can be statistically esti-
mated from the sounder high spectral resolution infrared
data guided by the imager spectral band radiances at 4,
8.6, 11 and 12 microns. We have successfully tested the
resulting data as input values to an algorithm which es-
timates cloud top pressure using data from 11, 12, and
13.3 micron bands; we find good agreement between VI-
IRS and MODIS cloud top pressures when VIIRS has
the assistance from the estimated 13.3 micron channel.
These example results suggest that synergistic use of VI-
IRS and CrIS measurements can overcome the absence
of a 13.3 micron channel on VIIRS. Routine application
of this multisensor fusion approach should be investigated
further.
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Figure 2: Spectral response function used to estimate the 13.3µm band from the hyperspectral image at lower resolution (left) and
the estimated R̃L

� used in the Estimation Block of the diagram as dependent variable (right).

Figure 3: Lower spatial resolution radiance values R̃L
⌫ computed from the known bands. The original available bands of MODIS

were degraded to AIRS resolution using geographic collocation data and used in the Estimation Block of the diagram as independent
variables.

Figure 4: Scatter plot of the target 13.3µm band radiance values (from MODIS) (z-axis) as a function of the four input bands
radiances projected into 2-PCA components (x-y plane) for visualization. The apparent surface of points is evidence that the target
band can be well estimated as function of the input bands.
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Figure 5: Actual (left), Estimated (middle), Magnitude of the difference (right)

Figure 6: Actual (left), Estimated (middle), Magnitude of the difference (right).

Figure 7: Histograms of the differences between actual 13.3 micron band and the estimated: Case 1 (left), Case 2 (right).
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Figure 8: Cloud Top Pressure product: original 13.3 micron band (left) and estimated (middle), and difference (right). Case 1:
MODIS Aqua granule MYD021KM.A2012020.0500.

Figure 9: Cloud Top Pressure product: original 13.3 micron band (left) and estimated (middle), and difference (right). Case 2:
MODIS Aqua granule MYD021KM.A2012243.0440.

Figure 10: Scattergrams of Actual versus Synthesised 13.3 micron bands: Case 1 (left), Case 2 (right)
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Figure 11: 28 August 2012 MODIS measured 13.3 micron brightness temperatures at 4:30 UTC (left) and VIIRS statistically
reconstructed 13.3 micron brightness temperatures (right) at 4:40 UTC.

Figure 12: 28 August 2012 cloud top pressures derived using the ABI algorithm (left) from MODIS measurements at 04:30 UTC
and (right) from VIIRS measurements and the statistically reconstructed from CrIS 13.3 micron channel at 04:40 UTC.

Figure 13: (left) 28 August 2012 cloud top pressures derived from VIIRS data without the 13.3 micron data using an optimal
estimation approach that relies on the NCEP Global Data Assimilation System as a first guess. (right) Difference of CTPs with
minus without 13.3 micron data.
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